Abstract
In reference [7] it is proved that the solution of the evolution Navier–Stokes equations in the whole of R 3 must be smooth if the direction of the vorticity is Lipschitz continuous with respect to the space variables. In reference [5] the authors improve the above result by showing that Lipschitz continuity may be replaced by 1/2-Holder continuity. A central point in the proofs is to estimate the integral of the term (ω · ∇)u · ω, where u is the velocity and ω = ∇ × u is the vorticity. In reference [4] we extend the main estimates on the above integral term to solutions under the slip boundary condition in the half-space R + 3 . This allows an immediate extension to this problem of the 1/2-Holder sufficient condition. The aim of these notes is to show that under the non-slip boundary condition the above integral term may be estimated as well in a similar, even simpler, way. Nevertheless, without further hypotheses, we are not able now to extend to the non slip (or adherence) boundary condition the 1/2-Holder sufficient condition. This is not due to the “nonlinear" term (ω · ∇)u · ω but to a boundary integral which is due to the combination of viscosity and adherence to the boundary. On the other hand, by appealing to the properties of Green functions, we are able to consider here a regular, arbitrary open set Ω.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.