Abstract

A systematic study of the effect of the spanwise length and the sidewall boundary condition of a numerical wave flume (NWF) on direct numerical simulation of a plunging breaking wave is performed. To deal with the topological changes of free surfaces, a high-fidelity numerical model is employed to solve the Navier–Stokes equations together with the volume of fluid function. After verification by two-dimensional (2D) simulations of a plunging breaker on a sloping beach, ten NWFs with different spanwise extents and sidewall boundary conditions are studied. Special attention is devoted to the three-dimensionality of the plunging breaker. Compared with three-dimensional (3D) models, the 2D model accurately reproduces the dynamics of a breaking solitary wave in the early stage, but it is inadequate for the study of the post-breaking process. For a 3D NWF with nonslip sidewall boundary condition, the wave domain can be divided into two regions with different physical properties. In the near-wall region, the nonslip boundary condition on the sidewall plays a crucial role in the wave hydrodynamics, while in the central region, the properties of the breaking wave are similar to those for the periodic boundary condition, which provide a closer representation of the real sea environment. The spanwise length of the NWF plays only a minor role in simulations under the periodic boundary condition. Furthermore, lateral boundaries and spanwise length show more influences on a plunging breaker with larger incident wave steepness. This study provides valuable support for the design of numerical simulations of wave breaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.