Abstract
Due to the spin-orbit coupling, Dirac fermions, submerged in a thermal bath with finite macroscopic vorticity, exhibit a spin polarisation along the direction parallel to the vorticity vector Ω. Due to the symmetries of the Lagrangian for free massless Dirac particles, there are three independent and classically conserved currents corresponding to the vector, axial, and helical charges. The constitutive relations for the charge currents and the stress-energy tensor at thermal equilibrium, derived in the framework of quantum field theory at finite temperature, reveal vorticity-induced contributions that deviate from the perfect fluid form. In this paper, we consider the mode structure of the corresponding hydrodynamical theory and derive collective excitations associated with coherent fluctuations of all three charges. We show that the chirally imbalanced rotating fluid should possess non-reciprocal gapless waves that propagate with different velocities along and opposite to the vorticity vector. We also uncover a strictly unidirectional mode, which we call the axial vortical wave, propagating in the background of the axial charge density. The emergence of this wave can be traced back to earlier studies of vortical chiral fluids in a hydrodynamic approach. We also point out an unexpected instability in the limit of degenerate matter and discuss possible solutions when helicity and axial charge non-conservation are taken into account.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have