Abstract
This paper describes an experimental and numerical investigation of concentrated vortex flow past a sphere in a constant-diameter pipe. As the swirl was increased at a fixed sphere Reynolds number of approximately 1100, the length of the mean downstream separation bubble decreased. For a small range of swirl intensity, an almost stagnant separation bubble formed on the upstream hemisphere. A further increase in swirl caused the bubble to become unstable and develop into an unsteady spiral disturbance. At very high swirl the downstream separation bubble was eliminated and an unsteady separation zone extended far upstream. Calculations of the vorticity field from surface fits to azimuthal and axial velocity data suggest that upstream separation is caused by the distortion of vortex filaments in the diverging flow approaching the sphere. Numerical solutions of steady inviscid axisymmetric flow past a sphere exhibit a fold in the vicinity of upstream separation. It is suggested that this accounts for the extreme sensitivity encountered in the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.