Abstract

The superconducting quantum interference (SQI) patterns of Josephson junctions fabricated from hybrid structures that interface an s-wave superconductor with a topological insulator can be used to detect signatures of novel quasiparticle states. Here, we compare calculated and experimental SQI patterns obtained from hybrid junctions fabricated on cadmium arsenide, a two-dimensional topological insulator. The calculations account for the effects of Abrikosov (anti-) vortices in the superconducting contacts. They describe the experimentally observed deviations of the SQI from an ideal Fraunhofer pattern, including anomalous phase shifts, node lifting, even/odd modulations of the lobes, irregular lobe spacing, and an asymmetry in the positive/negative magnetic field. We also show that under a current bias, these vortices enter the electrodes even if there is no intentionally applied external magnetic field. The results show that Abrikosov vortices in the electrodes of the junctions can explain many of the observed anomalies in the SQI patterns of topological insulator Josephson junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.