Abstract

In this work we present a new class of exact stationary solutions for two-dimensional (2D) Euler equations. Unlike already known solutions, the new ones contain complex singularities. We consider point singularities which have a vector field index greater than 1 as complex. For example, the dipole singularity is complex because its index is equal to 2. We present in explicit form a large class of exact localized stationary solutions for 2D Euler equations with a singularity whose index is equal to 3. The solutions obtained are expressed in terms of elementary functions. These solutions represent a complex singularity point surrounded by a vortex satellite structure. We also discuss the motion equation of singularities and conditions for singularity point stationarity which provide the stationarity of the complex vortex configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call