Abstract

We study the dynamics of the collinear points in the planar, restricted three-body problem, assuming that the primaries move on an elliptic orbit around a common barycenter. The equations of motion can be conveniently written in a rotating–pulsating barycentric frame, taking the true anomaly as independent variable. We consider the Hamiltonian modeling this problem in the extended phase space and we implement a normal form to make a center manifold reduction. The normal form provides an approximate solution for the Cartesian coordinates, which allows us to construct several kinds of orbits, most notably planar and vertical Lyapunov orbits, and halo orbits. We compare the analytical results with a numerical simulation, which requires special care in the selection of the initial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.