Abstract

The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×10{8} are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This criterion allows distinguishing vorticity- and strain-dominated regions in the flow by decomposing the velocity gradient tensor into symmetric and antisymmetric parts. Vortex densities, mean vortex radii and mean vortex circulations are calculated at two horizontal cross-sections of the cylindrical flow domain and at several rotation rates, described by the Taylor number which takes values between 3.0×10{8} and 7.7×10{10} . Separate statistics are calculated for cyclonic and anticyclonic vortices. Vortex densities and mean vortex radii are mostly independent of the Taylor number except very close to the bottom and top plates where more vortices are detected when the Taylor number is raised (rotation increases). The vortex population close to the plate consists mostly of cyclones while further into the bulk of the domain a similar amount of cyclones and anticyclones is found. The cyclonic vortices contain more circulation than the anticyclones. The same vortex analysis of the simulation results at additional vertical positions revealed that the vortices are formed in a boundary layer on the plate with a thickness of approximately two Ekman lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.