Abstract

The need for structuring on micrometer scales is abundant, for example, in view of phononic applications. We here outline a novel approach based on the phenomenon of active turbulence on the mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers intrinsically stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid self-organizes into a periodically structured nonequilibrium state. Introducing additional passive particles of intermediate size leads to regular spatial organization of these objects. Our approach opens a new path toward functionalization through patterning of thin films and membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.