Abstract

Abstract Vortex lines passing through the low-level mesocyclone regions of six supercell thunderstorms (three nontornadic, three tornadic) are computed from pseudo-dual-Doppler airborne radar observations obtained during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX). In every case, at least some of the vortex lines emanating from the low-level mesocyclones form arches, that is, they extend vertically from the cyclonic vorticity maximum, then turn horizontally (usually toward the south or southwest) and descend into a broad region of anticyclonic vertical vorticity. This region of anticyclonic vorticity is the same one that has been observed almost invariably to accompany the cyclonic vorticity maximum associated with the low-level mesocyclone; the vorticity couplet straddles the hook echo of the supercell thunderstorm. The arching of the vortex lines and the orientation of the vorticity vector along the vortex line arches, compared to the orientation of the ambient (barotropic) vorticity, are strongly suggestive of baroclinic vorticity generation within the hook echo and associated rear-flank downdraft region of the supercells, and subsequent lifting of the baroclinically altered/generated vortex lines by an updraft. Discussion on the generality of these findings, possible implications for tornadogenesis, and the similarity of the observed vortex lines to vortex lines in larger-scale convective systems are included as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.