Abstract
In this paper, the vortex-induced vibrations of a hinged–hinged pipe conveying fluid are examined, by considering the internal fluid velocities ranging from the subcritical to the supercritical regions. The nonlinear coupled equations of motion are discretized by employing a four-mode Galerkin method. Based on numerical simulations, diagrams of the displacement amplitude versus the external fluid reduced velocity are constructed for pipes transporting subcritical and supercritical fluid flows. It is shown that when the internal fluid velocity is in the subcritical region, the pipe is always vibrating periodically around the pre-buckling configuration and that with increasing external fluid reduced velocity the peak amplitude of the pipe increases first and then decreases, with jumping phenomenon between the upper and lower response branches. When the internal fluid velocity is in the supercritical region, however, the pipe displays various dynamical behaviors around the post-buckling configuration such as inverse period-doubling bifurcations, periodic and chaotic motions. Moreover, the bifurcation diagrams for vibration amplitude of the pipe with varying internal fluid velocities are constructed for each of the lowest four modes of the pipe in the lock-in conditions. The results show that there is a significant difference between the vibrations of the pipe around the pre-buckling configuration and those around the post-buckling configuration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have