Abstract

Abstract The unsteady airflow over automotive side-view mirrors is a typical source of turbulence which creates extra drag force, aerodynamic noise and vibration. A CFD analysis is presented for vortex generators (VGs) application on the vehicle side-view mirrors for the purpose of flow improvement. Vortex generators are used to delay flow separation and increase the control surfaces which affect the drag force and down force of the vehicle. Reduced drag force can potentially increase fuel economy, and an increased downforce will increase vehicle grip force and improve vehicle stability which is essential for racing cars. This paper presents practical solutions for mitigating flow turbulence and adjusting down force for existing side-view mirrors. Four VG configurations were designed and numerically analyzed in combination with the baseline model at air speeds ranged from 15 to 80 miles per hour. This research investigated the effect of each VG configuration on the side-view mirror’s aerodynamic performance. The turbulent flow through the side-view mirror were analyzed by using standard K-epsilon (K-ε) Reynolds-averaged Navier-Stokes method. The drag and down forces results were obtained and compared with the baseline model. The CFD analysis concluded the following: (1) Setting the VGs with a 5 degree attack angle on the upwind face of the mirror slightly reduced the drag force. (2) Setting the VGs at the top of the mirror surface greatly increased the downforce with a large drag force increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.