Abstract

We consider the classical dynamics of a particle in a (d=2,3)-dimensional space-periodic potential under the influence of time-periodic external fields with zero mean. We perform a general time-space symmetry analysis and identify conditions, when the particle will generate a nonzero averaged translational and vortex currents. We perform computational studies of the equations of motion and of corresponding Fokker-Planck equations, which confirm the symmetry predictions. We address the experimentally important issue of current control. Cold atoms in optical potentials and magnetic traps are among possible candidates to observe these findings experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.