Abstract
Natural killer (NK) cells are an essential part of the innate immune system that helps control infections and tumors. Recent studies have shown that Vorinostat, a histone deacetylase (HDAC) inhibitor, can cause significant changes in gene expression and signaling pathways in NK cells. Since gene expression in eukaryotic cells is closely linked to the complex three-dimensional (3D) chromatin architecture, an integrative analysis of the transcriptome, histone profiling, chromatin accessibility, and 3D genome organization is needed to gain a more comprehensive understanding of how Vorinostat impacts transcription regulation of NK cells from a chromatin-based perspective. The results demonstrate that Vorinostat treatment reprograms the enhancer landscapes of the human NK-92 NK cell line while overall 3D genome organization remains largely stable. Moreover, we identified that the Vorinostat-induced RUNX3 acetylation is linked to the increased enhancer activity, leading to elevated expression of immune response-related genes via long-range enhancerpromoter chromatin interactions. In summary, these findings have important implications in the development of new therapies for cancer and immune-related diseases by shedding light on the mechanisms underlying Vorinostat's impact on transcriptional regulation in NK cells within the context of 3D enhancer network.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have