Abstract
BackgroundThe von Willebrand factor (VWF) is a multimeric plasma glycoprotein essential for hemostasis, inflammation, and angiogenesis. The majority of VWF is synthesized by endothelial cells (ECs) and stored in Weibel–Palade bodies (WPB). Among the range of proteins shown to co-localize to WPB is angiopoietin-2 (Angpt-2), a ligand of the receptor tyrosine kinase Tie-2. We have previously shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by its interaction with Angpt-2. MethodsStatic-binding assays were used to probe the interaction between Angpt-2 and VWF. Binding in media from cultured human umbilical vein ECs s and in plasma was determined by immunoprecipitation experiments. Immunofluorescence was used to detect the presence of Angpt-2 on VWF strings, and flow assays were used to investigate the effect on VWF function. ResultsStatic-binding assays revealed that Angpt-2 bound to VWF with high affinity (KD,app ∼3 nM) in a pH and calcium-dependent manner. The interaction was localized to the VWF A1 domain. Co-immunoprecipitation experiments demonstrated that the complex persisted following stimulated secretion from ECs and was present in plasma. Angpt-2 was also visible on VWF strings on stimulated ECs. The VWF–Angpt-2 complex did not inhibit the binding of Angpt-2 to Tie-2 and did not significantly interfere with VWF-platelet capture. ConclusionsTogether, these data demonstrate a direct binding interaction between Angpt-2 and VWF that persists after secretion. VWF may act to localize Angpt-2; further work is required to establish the functional consequences of this interaction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have