Abstract

Acquired peripheral hearing loss (APHL) in midlife has been identified as the greatest modifiable risk factor for dementia; however, the pathophysiological neural mechanisms linking APHL with an increased risk of dementia remain to be elucidated. Here, in an adult male mouse model of noise-induced hearing loss (NIHL), one of the most common forms of APHL, we demonstrated accelerated age-related cognitive decline and hippocampal neurodegeneration during a 6-month follow-up period, accompanied by progressive hippocampal microglial aberrations preceded by immediate-onset transient elevation in serum glucocorticoids and delayed-onset sustained myelin disruption in the hippocampus. Pretreatment with the glucocorticoid receptor antagonist RU486 before stressful noise exposure partially mitigated the early activation of hippocampal microglia, which were present at 7 days post noise exposure (7DPN), but had no impact on later microglial aberrations, hippocampal neurodegeneration, or cognitive decline exhibited at 1 month post noise exposure (1MPN). One month of voluntary wheel exercise following noise exposure barely affected either the hearing threshold shift or hippocampal myelin changes but effectively countered cognitive impairment and the decline in hippocampal neurogenesis in NIHL mice at 1MPN, paralleled by the normalization of microglial morphology, which coincided with a reduction in microglial myelin inclusions and a restoration of microglial hypoxia-inducible factor-1α (HIF1α) expression. Our results indicated that accelerated cognitive deterioration and hippocampal neuroplastic decline following NIHL are most likely driven by the maladaptive response of hippocampal microglia to myelin damage secondary to hearing loss, and we also demonstrated the potential of voluntary physical exercise as a promising and cost-effective strategy to alleviate the detrimental impact of APHL on cognitive function and thus curtail the high and continuously increasing global burden of dementia. Furthermore, the findings of the present study highlight the contribution of myelin debris overload to microglial malfunction and identify the microglial HIF1α-related pathway as an attractive candidate for future comprehensive investigation to obtain a more definitive picture of the underlying mechanisms linking APHL and dementia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.