Abstract
This study aimed to examine the effects of voluntary wheel running on cancer cachexia‐induced mitochondrial alterations in mouse skeletal muscle. Mice bearing colon 26 adenocarcinoma (C26) were used as a model of cancer cachexia. C26 mice showed a lower gastrocnemius and plantaris muscle weight, but 4 weeks of voluntary exercise rescued these changes. Further, voluntary exercise attenuated observed declines in the levels of oxidative phosphorylation proteins and activities of citrate synthase and cytochrome c oxidase in the skeletal muscle of C26 mice. Among mitochondrial morphology regulatory proteins, mitofusin 2 (Mfn2) and dynamin‐related protein 1 (Drp1) were decreased in the skeletal muscle of C26 mice, but exercise resulted in similar improvements as seen in markers of mitochondrial content. In isolated mitochondria, 4‐hydroxynonenal and protein carbonyls were elevated in C26 mice, but exercise blunted the increases in these markers of oxidative stress. In addition, electron microscopy revealed that exercise alleviated the observed increase in the percentage of damaged mitochondria in C26 mice. These results suggest that voluntary exercise effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cachexia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.