Abstract
BackgroundCancer cachexia is a serious metabolic disorder syndrome that is responsible for the deaths of approximately 30% of patients with cancer, but effective drugs for cancer cachexia are still lacking. Inflammatory cytokines such as TNF-α or IL-6 are involved in the induction of skeletal muscle atrophy and fat depletion in patients with cancer cachexia. PurposeIn this study, we assessed the therapeutic effects of the natural compound alantolactone (AL) on cancer cachexia and tried to clarify the mechanisms by which it ameliorates muscle atrophy. MethodsThe C26 tumor-bearing cancer cachexia mouse model was used to evaluate the efficacy of AL in alleviating cancer cachexia in vivo. The levels of IL-6 or TNF-α in mouse serum were detected using ELISA kits. Cultured C2C12 myotubes and 3T3-L1 adipocytes treated with conditioned medium of C26 tumor cells, IL-6 or TNF-α were employed as in vitro cancer cachexia models to examine the effects of AL in vitro. ResultsAL (5 or 10 mg/kg, qd, i.p.) protected mice with C26 tumors and cachexia from a loss of body weight and muscle wasting but only slightly ameliorated fat loss. The circulating level of IL-6 but not TNF-α was significantly decreased by AL. AL treatment significantly inhibited STAT3 activation in the gastrocnemius (GAS) muscle of cancer cachexia mice. AL (0.125, 0.25, 0.5 and 1 µM) dose-dependently ameliorated myotube atrophy and STAT3 activation in cultured C2C12 myotubes induced by conditioned medium from C26 tumor cells. AL also ameliorated C2C12 myotube atrophy induced by IL-6 and inhibited IL-6-mediated STAT3 activation. AL exhibited weak effects on ameliorating TNF-α-mediated myotube atrophy and NF-κB activation. Only AL at high doses of more than 5 µM ameliorated lipolysis and STAT3 activation induced in mature 3T3-L1 adipocytes by conditioned medium from C26 tumor cells. ConclusionsAL significantly ameliorated muscle atrophy in a cancer cachexia model mainly through the inhibition of the STAT3 pathway. AL might be a promising lead compound in the development of drug candidates for cancer cachexia therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.