Abstract

A prospective clinical trial, Radiation Therapy Oncology Group (RTOG) 0933, has demonstrated that whole brain radiotherapy (WBRT) using conformal radiation delivery technique with hippocampal avoidance is associated with less memory complications. Further sparing of other organs at risk (OARs) including the scalp, ear canals, cochleae, and parotid glands could be associated with reductions in additional toxicities for patients treated with WBRT. We investigated the feasibility of WBRT using volumetric-modulated arc therapy (VMAT) to spare the hippocampi and the aforementioned OARs. Ten patients previously treated with nonconformal WBRT (NC-WBRT) using opposed lateral beams were retrospectively re-planned using VMAT with hippocampal sparing according to the RTOG 0933 protocol. The OARs (scalp, auditory canals, cochleae, and parotid glands) were considered as dose-constrained structures. VMAT plans were generated for a prescription dose of 30 Gy in 10 fractions. Comparison of the dosimetric parameters achieved by VMAT and NC-WBRT plans was performed using paired t-tests using upper bound p-value of < 0.001. Average beam on time and monitor units (MUs) delivered to the patients on VMAT were compared with those obtained with NC-WBRT. All VMAT plans met RTOG 0933 dosimetric criteria including the dose to hippocampi of 100% of the volume (D100%) of 8.4 ± 0.3 Gy and maximum dose of 15.6 ± 0.4 Gy, respectively. A statistically significant dose reduction (p < 0.001) to all OARs was achieved. The mean and maximum scalp doses were reduced by an average of 9 Gy (32%) and 2 Gy (6%), respectively. The mean and maximum doses to the auditory canals were reduced from 29.5 ± 0.5 Gy and 31.0 ± 0.4 Gy with NC-WBRT, to 21.8 ± 1.6 Gy (26%) and 27.4 ± 1.4 Gy (12%) with VMAT. VMAT also reduced mean and maximum doses to the cochlea by an average of 4 Gy (13%) and 2 Gy (6%), respectively. The parotid glands mean and maximum doses with VMAT were 4.4 ± 1.9 Gy and 15.7 ± 5.0 Gy, compared to 12.8 ± 4.9 Gy and 30.6 ± 0.5 Gy with NC-WBRT, respectively. The average dose reduction of mean and maximum of parotid glands from VMAT were 65% and 50%, respectively. The average beam on time and MUs were 2.3minutes and 719 on VMAT, and 0.7 minutes and 350 on NC-WBRT. This study demonstrated the feasibility of WBRT using VMAT to not only spare the hippocampi, but also significantly reduce dose to OARs. These advantages of VMAT could potentially decrease the toxicities associated with NC-WBRT and improve patients' quality of life, especially for patients with favorable prognosis receiving WBRT or patients receiving prophylactic cranial irradiation (PCI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call