Abstract

IntroductionRecently, carbon fiber (CF) has prevailed as the primary material used in radiotherapy couchtops. Modern couchtops incorporate the CF sandwich design, in which two thin CF plates sandwich an air-equivalent polymeric foam. Developments in radiotherapy necessitate irradiation from posterior angles through the couchtop. However, the presence of the couchtop needs proper modeling in the Treatment Planning System (TPS) due to attenuation; otherwise, the tumor dose is reduced. In the current study, an effort was made with the intent of finding the optimum electron density (ED) values for Elekta's iBEAM Evo couchtop components (CF and Foam Core (FC)) for its proper modeling in Monaco TPS. Also, the attenuation of the beam due to the couchtop's presence was investigated. Materials and MethodsA cylindrical phantom with an ionization chamber positioned at the isocenter was utilized for the measurements. The phantom was placed centrally on the iBEAM Evo couchtop and was irradiated with an Elekta Infinity linear accelerator's 6, 10, and 15 MV photon beams. The gantry angle was set at 0o and from 120o to 180o with an increment of 10o. The same procedure was designed and followed in Monaco TPS. Measured and calculated dose values were compared by calculating percentage deviation (PD). Attenuation has also been calculated using the measurements of the experimental setup and the Monaco calculations. ResultsThe values of ED that provided the optimum agreement between measured and Monaco-calculated dose values while minimizing PD were 0.55 g/cm3 for CF, and 0.1 g/cm3 for FC. The maximum values of PD for the beams of 6, 10, and 15 MV were -0.62%, +1,78%, and +2.35% , respectively, for a 5x5 cm2 field size. Furthermore, Monaco predicted attenuation from 1.83% to 6.26% (calculated values), while from the measurements, an attenuation from 1.44% to 5.75% (measured values) regarding the posterior angles was found. Thus, good agreement was verified between the TPS calculations and experimental measurements. ConclusionsElekta's iBEAM Evo couchtop modeling was successfully validated in Monaco TPS. The couchtop's presence alters the patient's dose regarding irradiation from the posterior angles. Due to the attenuation of the beam, proper incorporation, modeling, and validation of the couchtop are necessary to improve the radiotherapy outcome and ensure that each patient receives the optimal treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.