Abstract
The Shake-The-Box technique was applied to experimentally quantify the time-resolved volumetric flow field around a free-flying quadcopter UAV with an overall span of about 0.5 m. State-of-the-art LED illumination and high-speed camera equipment was combined with modern Lagrangian tracer particle tracking and data assimilation techniques, facilitating a measurement volume larger than 1.5m3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${1.5}\\,{\\hbox {m}^3}$$\\end{document}. The setup allowed for both hover and limited maneuvering of the quadcopter, while resolving even small details of the complex interactional aerodynamics. In hover out of ground effect, the four individual rotor wakes merged into a single jet within a few rotor radii below the rotor planes. Evaluating the mass and momentum fluxes over suitable control volumes yields accurate estimates for the quadcopter’s total thrust, the asymmetric thrust distribution between front and back rotors, and the entrainment of external flow through turbulent mixing. Hover in ground effect decreases the power requirement and induces recirculating flow in the center of the four rotors. The outwash pattern is non-uniform with jets developing between the rotors and pointing in radially outward directions. Forward flight cases result in a skewed, rapidly merging wake flanked by the roll-up of two “supervortices” similar to the wingtip vortices of fixed-wing vehicles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have