Abstract
To investigate the prognostic value of clinical, volumetric, and radiomics-based textural parameters in baseline [ 18 F]FDG-PET/CT scans of diffuse large B-cell lymphoma (DLBCL) patients. We retrospectively investigated baseline PET/CT scans and collected clinical data of fifty DLBCL patients. PET images were segmented semiautomatically to determine metabolic tumor volume (MTV), then the largest segmented lymphoma volume of interest (VOI) was used to extract first-, second-, and high-order textural features. A novel value, MTVrate was introduced as the quotient of the largest lesion's volume and total body MTV. Receiver operating characteristics (ROC) analyses were performed and 24-months progression-free survival (PFS) of low- and high-risk cohorts were compared by log-rank analyses. A machine learning algorithm was used to build a prognostic model from the available clinical, volumetric, and textural data based on logistic regression. The area-under-the-curve (AUC) on ROC analysis was the highest of MTVrate at 0.74, followed by lactate-dehydrogenase, MTV, and skewness, with AUCs of 0.68, 0.63, and 0.55, respectively which parameters were also able to differentiate the PFS. A combined survival analysis including MTV and MTVrate identified a subgroup with particularly low PFS at 38%. In the machine learning-based model had an AUC of 0.83 and the highest relative importance was attributed to three textural features and both MTV and MTVrate as important predictors of PFS. Individual evaluation of different biomarkers yielded only limited prognostic data, whereas a machine learning-based combined analysis had higher effectivity. MTVrate had the highest prognostic ability on individual analysis and, combined with MTV, it identified a patient group with particularly poor prognosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have