Abstract

Tumor size is often determined from computed tomography (CT) images to assess disease progression. A study was conducted to demonstrate the advantages of the fuzzy C-means (FCM) algorithm for volumetric analysis of colorectal liver metastases in comparison with manual contouring. Intra-and interobserver variability was assessed for manual contouring and the FCM algorithm in a study involving contrast-enhanced helical CT images of 43 hypoattenuating liver lesions from 15 patients with a history of colorectal cancer. Measurement accuracy and interscan variability of the FCM and manual methods were assessed in a phantom study using paraffin pseudotumors. In the clinical imaging study, intra-and interobserver variability was reduced using the FCM algorithm as compared with manual contouring (P = 0.0070 and P = 0.0019, respectively). Accuracy of the measurement of the pseudotumor volume was improved using the FCM method as compared with the manual method (P = 0.047). Interscan variability of the pseudotumor volumes was measured using the FCM method as compared with the manual method (P = 0.04). The FCM algorithm volume was highly correlated with the manual contouring volume (r = 0.9997). Finally, the shorter time spent in calculating tumor volume using the FCM method versus the manual contouring method was marginally statistically significant (P = 0.080). These results suggest that the FCM algorithm has substantial advantages over manual contouring for volumetric measurement of colorectal liver metastases from CT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call