Abstract
Quasifuchsian hyperbolic manifolds, or more generally convex co-compact hyperbolic manifolds, have infinite volume, but they have a well-defined ``renormalized'' volume. We outline some relations between this renormalized volume and the volume, or more precisely the ``dual volume'', of the convex core. On one hand, there are striking similarities between them, for instance in their variational formulas. On the other, object related to them tend to be within bounded distance. Those analogies and proximities lead to several questions. Both the renormalized volume and the dual volume can be used for instance to bound the volume of the convex core in terms of the Weil-Petersson distance between the conformal metrics at infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.