Abstract
We prove a dynamical wave trace formula for asymptotically hyperbolic (n + 1)-dimensional manifolds with negative (but not necessarily constant) sectional curvatures; the formula equates the renormalized wave trace to the lengths of closed geodesics. This result generalizes the classical theorem of Duistermaat and Guillemin for compact manifolds and the results of Guillope and Zworski, Perry, and Guillarmou and Naud for hyperbolic manifolds with infinite volume. A corollary of this dynamical trace formula is a dynamical resonance-wave trace formula for compact perturbations of convex cocompact hyperbolic manifolds. We define a dynamical zeta function and prove its analyticity in a half plane. In our main result, we produce a prime orbit theorem for the geodesic flow. This is the first such result for manifolds that have neither constant curvature nor finite volume. As a corollary to the prime orbit theorem, using our dynamical resonance-wave trace formula, we show that the existence of pure point spectrum for the Laplacian on negatively curved compact perturbations of convex cocompact hyperbolic manifolds is related to the dynamics of the geodesic flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.