Abstract

The role of the phospholemman (PLM) on the efflux of taurine and chloride induced by swelling was studied in HEK293 cells overexpressing stable transfected PLM. PLM, a substrate for protein kinases C and A, is a protein that induces an anion current in Xenopus oocytes and forms taurine-selective channels in lipid bilayers. Taurine contributes as an osmolyte to regulatory volume decrease (RVD) and is highly permeable through PLM channels in bilayers. In PLM-overexpressing cells the process of RVD was more rapid and efficient (75%) than in control cells (44%). Also, [ 3H]taurine and 125I efflux induced by hyposmolarity were markedly increased (30–100%) in two subclones of cells overexpressing PLM. This increased efflux was sensitive to the Cl channel blockers DDF, NPPB and DIDS. Acute treatment of control cells with isoproterenol and norepinephrine induced a significant potentiation (50–60%) of [ 3H]taurine release induced by hyposmolarity. In PLM-overexpressing cells the potentiation by these drugs was higher (100%). Insulin induced also an increase in [ 3H]taurine release, but only in PLM-overexpressing cells (50%). These results indicate that PLM may play a role in the RVD and that its phosphorylation may have a physiological significance during this process. The mechanisms involved in this process could include the activation of PLM itself as channel or the modulation of other preexisting channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call