Abstract

The role of phospholemman (PLM) in taurine and Cl − efflux elicited by 30% hyposmotic solution was studied in cultured cerebellar astrocytes with reduced PLM expression by antisense oligonucleotide (AO) treatment. PLM, a substrate for protein kinases (PK) C and A, is a protein that increases an anion current in Xenopus oocytes and forms taurine-selective channels in lipid bilayers. Taurine contributes as an osmolyte to regulatory volume decrease (RVD) and is highly permeable through PLM channels in bilayers. Two antisense oligonucleotides (AO1 and AO2) effectively decreased the expression of the PLM protein by 40% and 30%, respectively, and markedly reduced [ 3H]taurine efflux by 67% and 62%. AO treatment also decreased the osmosensitive release of Cl −, followed as 125I. The inhibition of Cl − efflux (23% for AO1 and 13% for AO2) was notably lower than for [ 3H]taurine. The contribution of PKC and PKA in the function of PLM was also evaluated in astrocytes. Pharmacological activation or inhibition of PKC and PKA revealed that the osmosensitive taurine efflux is essentially PKC-independent while 125I efflux is reduced by the PKC blockers H-7 (21%) and Gö6983 (41%). The PKA activator forskolin and dbcAMP increased taurine efflux by 66–70% and 125I efflux by 21–45%. Norepinephrine increased the osmosensitive taurine efflux at about the same extent as dbcAMP and forskolin, and this was reduced by PKA blockers. These results suggest that PLM plays a role in RVD in astrocytes by predominantly influencing taurine fluxes, which are modulated by PKA but not PKC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call