Abstract
We consider the evolution of a closed convex hypersurface under a volume preserving curvature flow. The speed is given by a power of the mth mean curvature plus a volume preserving term, including the case of powers of the mean curvature or of the Gauss curvature. We prove that if the initial hypersurface satisfies a suitable pinching condition, the solution exists for all times and converges to a round sphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.