Abstract
We consider the flow of closed convex hypersurfaces in Euclidean space $\mathbb{R}^{n+1}$ with speed given by a power of the $k$‑th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the mixed volume $V_{n+1-k}$ of the evolving hypersurface. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to a round sphere smoothly. No curvature pinching assumption is required on the initial hypersurface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Differential Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.