Abstract
This study aimed to test taper functions and artificial intelligence (AI) models in order to estimate merchantable volumes of Japanese cedar (Cryptomeria japonica) trees in a homogenous plantation in southern Brazil. A total of 30 individuals were rigorously scaled and their total volumes were calculated, including those of the following log assortments: veneer, sawn, pulp and energy. Three AI models, i.e. two variants of k-nearest neighbours (KNN) instance-based classification (one and three nearest neighbours) and an artificial neural network (ANN) approach, were compared with three traditional taper models: fifth-order polynomial, fractional powers and the Garay model. The estimated volumes were compared with the actual volumes by means of the standard error (Syx), bias, precision and accuracy. Total volume estimates proved to be unbiased (maximum bias 5.42%), precise (maximum precision 9.28%) and accurate (maximum accuracy 10.79%) with all of the investigated models. The tested models tended to give lower bias, better precision and accuracy in the middle portion of the stems, but worse estimates at the base and tip (maximum bias −12.41%). In general, the KNN models improved merchantable volume estimation, particularly KNN1, which is a straightforward and simple method. We conclude that AI techniques have appeal for application in forest inventories and that KNN is a particularly interesting alternative for tree volume estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.