Abstract

Introduction The accurate prediction of mandibular bone growth is crucial in orthodontics and maxillofacial surgery, impacting treatment planning and patient outcomes. Traditional methods often fall short due to their reliance on linear models and clinician expertise, which are prone to human error and variability. Artificial intelligence (AI) and machine learning (ML) offer advanced alternatives, capable of processing complex datasets to provide more accurate predictions. This systematic review examines the efficacy of AI and ML models in predicting mandibular growth compared to traditional methods. Method. A systematic review was conducted following the PRISMA guidelines, focusing on studies published up to July 2024. Databases searched included PubMed, Embase, Scopus, and Web of Science. Studies were selected based on their use of AI and ML algorithms for predicting mandibular growth. A total of 31 studies were identified, with 6 meeting the inclusion criteria. Data were extracted on study characteristics, AI models used, and prediction accuracy. The risk of bias was assessed using the QUADAS-2 tool. Results. The review found that AI and ML models generally provided high accuracy in predicting mandibular growth. For instance, the LASSO model achieved an average error of 1.41 mm for predicting skeletal landmarks. However, not all AI models outperformed traditional methods; in some cases, deep learning models were less accurate than conventional growth prediction models. Discussion. The variability in datasets and study designs across the included studies posed challenges for comparing AI models’ effectiveness. Additionally, the complexity of AI models may limit their clinical applicability. Despite these challenges, AI and ML show significant promise in enhancing predictive accuracy for mandibular growth. Conclusion. AI and ML models have the potential to revolutionize mandibular growth prediction, offering greater accuracy and reliability than traditional methods. However, further research is needed to standardize methodologies, expand datasets, and improve model interpretability for clinical integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.