Abstract

The biocompatibility and mechanical integrity of Ti and Ti6Al4V alloy can be affected by corrosion processes. This paper presents studies on the stability of anodic oxide films on Ti6Al4V and Ti in chloride medium. The oxides were grown potentiodynamically up to 8.0 V in the phosphate buffer saline (PBS) solution (pH 6.8) at 25 and 37 °C. The morphology of the obtained anodic oxides and the type of corrosion that occurred were analyzed by SEM–EDS. The Ti6Al4V alloy presented less corrosion resistance than pure Ti. Elemental analyses showed that the decrease of the alloy corrosion resistance is due mainly to the corrosion of Al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.