Abstract

A novel carbon paste electrode modified with carbon nanotubes and 5-amino-2′-ethyl -biphenyl-2-ol was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of ascorbic acid (AA), is described. The electrode was employed to study the electrocatalytic oxidation of AA, using cyclic voltammetry, chronoamperometry, and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of AA at the surface of modified electrode occurs at a potential of about 250 mV less positive than that of an unmodified carbon paste electrode. SWV exhibits a linear dynamic range from 2.0 × 10−7 to 5.0 × 10−4 M and a detection limit of 1.0 × 10−7 M for AA. In addition, this modified electrode was used for simultaneous determination of AA, acetaminophen (AC), and tryptophan (TRP). Finally, the modified electrode was used for determination of AA, AC, and TRP in pharmaceutical products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call