Abstract

L-DOPA multi-wall carbon nanotube modified glassy carbon electrode (DOPA-MWCNT-GCE) was used as a bifunctional electrocatalyst for simultaneous quantitative determination of ascorbic acid (AA) and adrenaline (AD). Electrochemical experiments show that the modified electrode plays the role of an excellent bifunctional electrocatalyst for the oxidation of AA and AD in two different potentials. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k′, for the electrocatalytic oxidation of AA and AD at the DOPA-MWCNT-GCE surface were estimated. Through a different pulse voltammetric (DPV) method, the plot of the electrocatalytic current versus AA and AD concentrations emerged to be constituted of two linear segments with different sensitivities. In addition, detection limits of 1.5μM for AA and 0.62μM for AD were obtained. In DPV, the proposed bifunctional electrocatalyst could separate the oxidation peak potentials of AA, AD, acetaminophen (AC) and tyrosine (Tyr) present in a mixture though, at the bare GCE, the peak potentials overlap. Finally, DOPA-MWCNT-GCE was satisfactorily used for the determination of AA, AD, AC and Tyr in pharmaceutical preparations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call