Abstract
Myoglobin-modified gold nanorods incorporating reduced graphene oxide (rGO) were fabricated and deposited on a glassy carbon electrode (GCE) to obtain a sensor for nitric oxide (NO). The Mb-AuNR/rGO nanohybrid showed a transverse localized surface plasmon resonance (LSPR) band with a peak at 508 nm, and a longitudinal LSPR band at 724 nm. The AuNRs have an average length of 38 ± 3 nm and a width of 11 ± 1 nm. The GCE modified with the nanohybrid is shown to be a viable sensor for the determination of NO by linear sweep voltammetry. Its electrocatalytic response toward the oxidation of NO is distinctly enhanced compared to other electrodes. The sensor, best operated at a working voltage of 0.85 V (vs. SCE), showed two linear response ranges (from 10 to100 μM, and from 100 to 1000 μM), with a detection limit of 5.5 μM. Furthermore, it exhibits excellent selectivity for NO over common interferents such as NaNO3, and also over electroactive species such as ascorbate, dopamine, glucose, and uric acid. These properties make it a promising tool for the detection of NO in situations such as capillary and pulmonary hypertension and embolism, and during vasodilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.