Abstract

1. The purely calcium-dependent action potential of the anterior lateral giant (ALG) cell in the leech Haementeria was examined under voltage clamp. 2. Analysis with ion substitutions showed that the ALG cell action potential is generated by only two time- and voltage-dependent conductance systems, an inward Ca-dependent current (ICa) and an outward Ca-dependent K current IK(Ca). 3. The kinetic properties of the inward current were examined both in Cs-loaded neurons with Ca as the current carrier as well as in Ba-containing Ringer solutions with Ba as the current carrier, since Ba effectively blocked all time- and voltage-dependent outward current. 4. During a maintained depolarization, Ba and Ca currents activated with a time constant tau m, they then inactivated with the decay following a single exponential time course with a time constant tau h. The time constants for decay of both Ba and Ca currents were comparable, suggesting that the mechanism of inactivation of ICa in the ALG cell is largely voltage dependent. In the range of potentials from 5 to 45 mV, tau m varied from 8 to 2 ms and tau h varied from 250 to 125 ms. 5. The activation of currents carried by Ba, after correction for inactivation, could be described reasonably well by the expression I'Ba = I'Ba(infinity) [1--exp(-t/tau m)]. 6. The steady-state activation of the Ba-conductance mBa(infinity) increased sigmoidally with voltage and was approximated by the equation mBa(infinity) = (1 + exp[(Vh-6)/3])-1. The steady-state inactivation hBa(infinity) varied with holding potential and could be described by the equation hBa(infinity) = [1 + exp(Vh + 10/7)]-1. Recovery from inactivation of IBa was best described by the sum of two exponential time courses with time constants of 300 ms and 1.75 s, respectively. 7. The outward current IK(Ca) developed very slowly (0.5-1 s to half-maximal amplitude) and did not inactivate during a 20-s depolarizing command pulse. Tail current decay of IK(Ca) followed a single exponential time course with voltage-dependent time constants of between 360 and 960 ms. The steady-state activation n infinity of IK(Ca) increased sigmoidally with depolarization as described by the equation n infinity = [1 + exp(Vh-13.5)/-8)]-1. 8. The reversal potentials of IK(Ca) tail currents were close to the expected equilibrium potential for potassium and they varied linearly with log [K]o with a slope of 51 mV. These results suggest a high selectivity of the conductance for K ions.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call