Abstract
The virtual movement of an augmented body, perceived as part of oneself, forms the basis of kinesthetic perception induced by visual stimulation (KINVIS). KINVIS is a visually induced virtual kinesthetic perception that clinically suppresses spasticity. The present study hypothesized that central neural network activity during KINVIS affects subcortical neural circuits. The present study aimed to elucidate whether reciprocal and presynaptic inhibition occurs during KINVIS. Seventeen healthy participants were recruited (mean age: 27.9 ± 3.6 years), and their soleus Hoffmann-reflexes (H-reflexs) were recorded by peripheral nerve stimulation while perceiving the dorsiflexion kinesthetic illusion in the right-side foot (seated in a comfortable chair). Two control conditions were set to observe the same foot video without the kinesthetic illusion while focusing on the static foot image. Unconditioned H-reflex and two types of conditioned H-reflexes were measured: Ia (reciprocal inhibition) and D1 (presynaptic inhibition). Reciprocal Ia and D1 inhibition of the soleus muscle was significantly enhanced during the kinesthetic illusion compared to the condition without kinesthetic illusion (a post-hoc analysis using the Bonferroni test: Ia inhibition, p = 0.002; D1 inhibition, p = 0.049). This study indicates that kinesthetic illusion elicits an inhibitory effect on the monosynaptic reflex loop of Ia afferents, potentially inhibiting the hyperexcitability of the stretch reflex. These findings demonstrate that brain activity associated with visually induced kinesthetic illusions acts on spinal inhibition circuits. These insights may be valuable in clinical rehabilitation practice, specifically for the treatment of spasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.