Abstract
In view of the sudden grid voltage distortions, such as voltage sags and unbalances, that may occur in photovoltaic (PV) grid-connected systems under local shading conditions, this paper proposes a control strategy integrating a linear active disturbance rejection controller (LADRC)-based virtual synchronous generator (VSG) and an active disturbance rejection controller (ADRC)-based dynamic voltage restorer (DVR). To enhance the stability and response speed of the PV inverter system, a novel LADRC-based voltage–current dual closed-loop control strategy with pre-synchronization is designed, ensuring stable operation of the inverter and load. To address the overshooting issues found in traditional PI control under local shading, the ADRC-based DVR compensates for PV system voltage fluctuations, achieving rapid voltage distortion compensation and ensuring grid-connected system safety. Simulink experiments verify the feasibility and effectiveness of the proposed control strategy in improving transient voltage quality in PV systems affected by local shading. The total harmonic distortion rates of voltage and current are both less than 0.5%, which significantly improves the performance compared to existing research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have