Abstract

This paper proposes a voltage prevention and emergency control strategy that consists of coordinately arranging multiple reactive power sources in order to handle the point of common coupling (PCC) voltage fluctuation and stability in large-scale PV power plants. When a disturbance occurs at the PCC, dynamic reactive power compensation devices are coordinated preferentially to support the PCC voltage. After the disturbance is cleared, the reactive power in dynamic and fast devices is transferred into static and slow devices so that the static VAR generation (SVG) can maintain a large power margin for coping with the next disturbance. Moreover, the reactive power output of the individual inverter in PV power plants is coordinately allocated using a model to optimize the in-station voltage distribution. Finally, the effectiveness of the proposed control strategy is verified by an example simulation of a practical large-scale PV power plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.