Abstract

This paper proposes a control technique for a large-scale grid-connected photovoltaic (PV) plant that maintains the connection of an inverter to the grid voltage under different types of faults, while injecting a reactive power to accommodate the required grid connection. This control strategy is suggested to improve the low-voltage ride-through (LVRT) capability of grid-connected PV power generation plants. A 20 MW solar PV power plant is modeled and simulated using Matlab/Simulink. The power plant is composed of 10 parallel groups of arrays with a power rating of 2 MWp. The solar PV arrays are connected to a medium-voltage side-rated 22 KV to the utility grid. A dynamic analysis of the grid-connected large-scale solar PV power plant is introduced. This analysis is accomplished in order to determine the impact of three-phase short-circuits at the point of common-coupling (PCC), where the solar PV power station is connected to ensure a practical voltage level by injecting active and reactive power. The reactive power support allows for faster restoration of voltage values at the PCC. When subjected to transient disturbances, the stability of the studied system relies on both the type of the disturbance and the initial operating situation. The disturbance may be either small, resulting from electrical load changes, or large, such as from a transmission line short-circuit (fault) and significant generator loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call