Abstract
The functioning of the cardiovascular system is critical for embryo survival. Cardiac contractions depend on the sequential activation of different classes of voltage-gated ion channels. Understanding the fundamental features of these interactions is important for identifying the mechanisms of pathologies development in the myocardium. However, at present there is no consensus on which ion channels are involved in the formation of automaticity in the early embryonic stages. The aim of this study was to elucidate the expression of genes encoding various types of ion channels that are involved in the generation of electrical activity chicken heart at different stages of ontogenesis. We analyzed the expression of 14 genes from different families of ion channels. It was revealed that the expression profiles of ion channel genes change depending on the stages of ontogenesis. The HCN4, CACNA1D, SCN1A, SCN5A, KCNA1 genes have maximum expression at the tubular heart stage. In adult, a switch occurs to the higher expression of CACNA1C, KCNH6, RYR and SLC8A1 genes. This data correlated with the results obtained by the microelectrode method. It can be assumed that the automaticity of the tubular heart is mainly due to the mechanism of the «membrane–clock» (hyperpolarization-activated current (If), Ca2+–current L–type (ICaL), Na+–current (INa) and the slow component of the delayed rectifier K+–current (IKs)). Whereas in adult birds, the mechanism for generating electrical impulses is determined by both « membrane– clock» and «Ca2+–clock».
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.