Abstract

Active modulation of quantum dot thin film photoluminescence (PL) has been far-reaching potential applications in biomedical and optoelectronic systems, but challenges remain in achieving large PL modulation depth and fast temporal response. Here, we report an efficient voltage-controlled optical down-converter by optically exciting a colloidal quantum dot thin film within a quantum dot light-emitting diode under reverse bias. Utilizing field-induced luminescence quenching, we show that a large electric field can strongly modify carrier dynamics in this nanostructured device, resulting in stable and reversible photoluminescence quenching. The device exhibits photoluminescence reduction of up to 99.5%, corresponding to a contrast ratio of 200:1 under the applied electric field of 3 MV cm−1 with a 300 ns response time. Using excitation wavelength dependent and transient PL spectroscopy, we further show that the high degree of quenching is achieved by a synergistic interplay of quantum-confined Stark effect and field-induced exciton dissociation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call