Abstract
Here, we report an artificial thermal recognition memory system mainly consisting of programmable polymer memristors and resistive temperature detectors. The memristor has a two-terminal structure with an insulating polymer sandwiched between a nanowrinkled graphene electrode and a nanopillar metal electrode, exhibiting novel voltage-controlled programmable rewritable and nonerasable nonvolatile memory effects. The integrated system is capable of detecting diverse weak and strong thermal stimuli and encoding them into binary memory signals for the selective recording of human thermal perception recognition. This work offers an effective strategy for constructing programmable memristive devices via interfacial nanoengineering and provides a new architecture of recognition memory for artificial intelligence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.