Abstract

Pancharatnam-Berry phase optical elements (PBOEs) have received much attention due to their ability to generate complex structured light or to manipulate the shape of a light beam. This work demonstrates a tunable liquid crystal (LC) Pancharatnam-Berry (LCPB) lens using a simple and cost-effective PB phase hologram optical setup and thermal polymerization to form an irreversible photo-patterning alignment layer. The LCPB lens with high photo-stability supports ultra-broadband operation and provides a diffraction efficiency of ∼90% throughout the visible spectral range, achieved by applying the appropriate voltages. The LCPB lens functions as a convex or a concave lens, depending on the handedness of the circularly polarized incident light, so its image reduction and magnification functions are demonstrated, and its photo-stability is characterized. The fabrication of the proposed LC PBOEs is simpler and more cost-effective than previous methods, and the irreversible photo-patterning alignment layer that is formed by thermal polymerization allows larger operational bandwidths, supporting new applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call