Abstract

In Miller and current buffer compensation techniques, the compensation capacitor often loads the output node. If a voltage buffer is used in feedback, the compensation capacitor obviates the loading on the output node. In this paper, we introduce an implementation of a voltage buffer compensation using a Flipped Voltage Follower (FVF) for stabilizing a two-stage CMOS op-amp. The op-amps are implemented in a 180-nm CMOS process with a power supply of 1.8V while operating with a quiescent current of 110µA. Results indicate that the proposed voltage buffer compensation using FVF improves the Unity Gain Frequency from 5.5MHz to 12.2MHz compared to Miller compensation. Also, the proposed technique enhances the transient response while lowering the compensation capacitance by 47% and 17.7% compared to Miller and common-drain compensation topologies. Utilization of FVF or its variants as a voltage buffer in a feedback compensation network has wide potential applications in the analog design space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.