Abstract

Abstract The author analyzes the impact of 13 major stratospheric aerosol producing volcanic eruptions since 1870 on the large-scale variability modes of sea level pressure in the Northern Hemisphere winter. The paper focuses on the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO) to address the question about the physical nature of these modes. The hypothesis that the phase of the El Niño–Southern Oscillation (ENSO) may control the geographical extent of the dominant mode in the Northern Hemisphere is also investigated, as well as the related possibility that the impact of the eruptions may be different according to the phase of ENSO. The author finds that both the AO and the NAO are excited in the first winter after the eruptions with statistical significance at the 95% level. Both the signal and the significance are larger for the NAO than for the AO. The excitation of the AO and the NAO is connected with the excitation of a secondary mode, which resembles an augmented Pacific–North American pattern. This mode has opposite polarity in the Atlantic and the Pacific and interferes negatively with the AO in the Pacific and positively in the Atlantic in the first winter after the eruptions, giving the superposition a strong NAO resemblance. Some evidence is found that the correlations between the Atlantic and the Pacific are stronger in the negative ENSO phase than in the positive phase, although this difference is not statistically significant when all data since 1870 are considered. The author does not find any evidence that the impact of the volcanic eruptions is more hemispheric in the negative than in the positive ENSO phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call