Abstract

This paper aims to empirically examine long memory and bi-directional information flow between estimated volatilities of highly volatile time series datasets of five cryptocurrencies. We propose the employment of Garman and Klass (GK), Parkinson’s, Rogers and Satchell (RS), and Garman and Klass-Yang and Zhang (GK-YZ), and Open-High-Low-Close (OHLC) volatility estimators to estimate cryptocurrencies’ volatilities. The study applies methods such as mutual information, transfer entropy (TE), effective transfer entropy (ETE), and Rényi transfer entropy (RTE) to quantify the information flow between estimated volatilities. Additionally, Hurst exponent computations examine the existence of long memory in log returns and OHLC volatilities based on simple R/S, corrected R/S, empirical, corrected empirical, and theoretical methods. Our results confirm the long-run dependence and non-linear behavior of all cryptocurrency’s log returns and volatilities. In our analysis, TE and ETE estimates are statistically significant for all OHLC estimates. We report the highest information flow from BTC to LTC volatility (RS). Similarly, BNB and XRP share the most prominent information flow between volatilities estimated by GK, Parkinson’s, and GK-YZ. The study presents the practicable addition of OHLC volatility estimators for quantifying the information flow and provides an additional choice to compare with other volatility estimators, such as stochastic volatility models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.