Abstract

Anoxic/anaerobic/oxic (A2/O) wastewater treatment has emerged as a major process for treatment of domestic wastewater. One of the issues with wastewater treatment plants (WWTPs) is that volatile sulfur compounds (VSCs) are discharged from them and pose numerous health risks. This study characterized VSC emissions at the water-air interface and concentrations of ambient air exposure from different treatment units in an A2/O WWTP. AERMOD modeling was used to simulate the atmospheric behaviors of discharged VSCs. Results demonstrated that VSC emission fluxes and exposure concentrations had followed a descending order of pretreatment>biological treatment>advanced treatment. Emissions were affected by sulfate concentrations and chemical oxygen demand in the wastewater, and control strategies based on these values were proposed. The AERMOD results indicated that the majority of the total hydrogen sulfide (87%) and methyl mercaptan (65%) emissions came from the primary sedimentation tank, while the majority of dimethyl sulfide (81%), carbon disulfide (84%), and dimethyl disulfide (93%) were emitted from the oxic area. MT and DMS were the main odorous components of the VSCs in ambient air based on the indicator of odor activity values. Noncancer health risks, determined by having a hazard quotient >1, of the measured VSCs were beyond acceptable limits. Overall, efforts should be made to minimize noncancer health risks as individuals are exposed to VSCs not only in treatment units but also in areas surrounding WWTPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call