Abstract

Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60L reactors with forced aeration for a period of 30days. The VSCs detected in all treatments were hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS2) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O2 concentration (p<0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0mgkg−1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H2S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call