Abstract
Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas; 2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas; 3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.
Highlights
IntroductionSurface coating facilities apply decorative or protective coatings (paints, varnishes, lacquers) to substrates, which can include metals, wood, paper, plastic, and others
Surface coating facilities apply decorative or protective coatings to substrates, which can include metals, wood, paper, plastic, and others
And annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ
Summary
Surface coating facilities apply decorative or protective coatings (paints, varnishes, lacquers) to substrates, which can include metals, wood, paper, plastic, and others. After the coating is applied, the surface is air and/or heat dried to remove the volatile solvents from the coated surface [1]. Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas [3,4,5]. Surface coating facilities release VOCs when organic solvents in the coatings evaporate [6,7]. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs) according to the US Clean Air Act, including xylene, ethylbenzene, and toluene
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.